农业行业

首页 » 常识 » 预防 » 年中国数字农业最新发展概况与趋势
TUhjnbcbe - 2021/8/16 0:45:00
什么是数字农业?

是指将遥感、地理信息系统、全球定位系统、计算机技术、通讯和网络技术、自动化技术等高新技术与地理学、农学、生态学、植物生理学、土壤学等基础学科有机地结合起来,实现在农业生产过程中对农作物、土壤从宏观到微观的实时监测,以实现对农作物生长、发育状况、病虫害、水肥状况以及相应的环境进行定期信息获取,生成动态空间信息系统,对农业生产中的现象、过程进行模拟,达到合理利用农业资源,降低生产成本,改善生态环境,提高农作物产品和质量的目的。

传统农业与数字农业的区别与核心因素对比

(来源:《数字生态论》赵国栋)

目前业界普遍认为,数字农业是一个集合概念,主要包括4个方面:农业物联网、农业大数据、精准农业、智慧农业。

农业物联网(InternetofThings)

农业物联网本质上是一套数控系统。在一个特定的封闭系统内,以探头、传感器、摄像头等设备为基础的物物相联。它根据已经确定的参数和模型,进行自动化调控和操作。由于需要以硬件设备的投资、联网为基础,因此投资额较大,主要用于设施农业生产过程的管理和操作,也用于农产品的加工、仓储和物流管理。

农业大数据(BigData)

农业大数据是与农业物联网相对应的概念,它是一个数据系统,在开放系统中收集、鉴别、标识数据,并建立数据库,通过参数、模型和算法来组合和优化多维和海量数据,为生产操作和经营决策提供依据,并实现部分自动化控制和操作。因为它是在完全开放的系统中运作,因此主要用于大田农业的生产和农业全产业链的操作和经营。

精准农业(PrecisionFarming)

精准农业是建立在农机硬件基础上的执行和操作系统。它主要是以农机的单机硬件为基础,配以探测设备和智能化的控制软件,以实现精准操作,变量控制(包括变量播种、变量施肥、变量喷药等),无人驾驶,以及最佳的工作环境和场景适配。精准农业强调的是(单体)设备和设施操作的精准和智能化控制,是硬件+软件。

智慧农业(SmartAgriculture)

智慧农业是建立在经验模型基础之上的专家决策系统,其核心是软件系统。智慧农业强调的是智能化的决策系统,配之以多种多样的硬件设施和设备,是系统+硬件。智慧农业的决策模型和系统可以在农业物联网和农业大数据领域得到广泛应用。国内外数字农业的发展历程

国外计算机及信息技术在农业上的应用发展阶段:

①20世纪50~60年代,农业应用计算机技术的重点在农业数据的科学计算,促进农业科技的定量化;

②70年代,农业应用计算机技术处理农业数据,重点发展农业数据库;

③80年代,以农业知识工程、专家系统的研究为重点;

④90年代,应用网络技术,开展农业信息服务网络的研究与开发;

⑤21世纪,采用标准化网络新技术,实施三维农业信息服务标准化网络连接新阶段。

发达国家通过计算机网络、遥感技术和地理信息系统技术来获取、处理和传递各类农业信息的应用技术已进入实用化阶段。中国数字农业较国外起步较晚,早期发展以*府*策引导和资金支持为主。

年4月20日,《全国县域数字农业农村发展水平评价报告》在中国农业展望大会上发布。报告显示,年全国县域数字农业农村发展总体水平达到33%,其中,农业生产数字化水平达到18.6%。中国农业生产数字化改造虽然快速起步,但和国际发达国家相比,还有很长一段路需要走。报告从不同的行业分析,中国农作物种植数字化水平为16.2%,设施栽培信息化水平为27.2%,畜禽养殖信息化水平为19.3%,水产养殖信息化水平为15.3%。这些数字技术包括生产环境监测、体征监测、农作物病虫害和动物疫情精准诊断及防控等方面,被率先应用在经济效益较高的行业。

数字技术助力传统农业转型升级

物联网农业数据实时获取,奠定农业数字化基础。

物联网在农业领域应用范围广泛,基于物联网的农业解决方案,通过实时收集并分析现场数据及部署指挥机制的方式,达到提升运营效率、扩大收益、降低损耗的目的。可变速率、精准农业、智能灌溉、智能温室等多种基于物联网的应用将推动农业流程改进。物联网科技可用于解决农业领域特有问题,打造基于物联网的智慧农场,实现作物质量和产量双丰收。

大数据决策“数字化”,全面提升生产效率。

万物互联在推动海量设备接入的同时,也将在云端生成海量数据。而挖掘这些由物联网产生的大数据中隐藏信息的方法就是利用人工智能。物联网最核心的商业价值就是将这些海量的数据进行智能化的分析、处理,从而生成基于不同商业模式的各类应用。

人工智能潜力巨大,激活农业高效发展。

在种植领域,人工智能有望提高粮食产量、减少资源浪费。在养殖领域中,利用人工智能可以有效降低疾病造成的损失。人工智能缩短农业研发进程。在实验室和研究中心,机器学习算法能够帮助培育更好的植物基因,创造更安全、更高效的农作物保护产品和化肥,并且开发更多的农产品。

未来数字农业的发展趋势

以“数字化”为特征的现代农业4.0是毋庸置疑的未来,数字农业将带来更高的产业效率,更公平的价值分配,更可持续的发展方式。我们认为中国数字农业的发展将呈现以下六大趋势:

数据供应定制化数据资源是发展数字农业的基石。

目前中国数字农业面临数据采集成本较高的困境。随着数据思维深入人心,数据采集的组织成本将大幅下降;随着农业物联网的升级换代、公共数据的不断开源以及从业者信息化水平的提升,数据采集的显性成本将不断减少。未来所有的农业产业单元都将拥有定制化的数据供应系统。而且,数据仓库里的静态资源将随着拥有者的数字化能力提升而不断流入产业链,通过交换、融合或再生,去不断创造价值,实现业务的数字化驱动。

数据模型国产化发现数据价值是数字农业发展的动力之源。

以色列可以把硬件设备卖给我们,却绝不开放后台系统,因为真正的核心技术是实现数据价值的模型。当下,随着大国科技竞争的加剧,引进科技成果的壁垒不断增高,而且由于国内外农业业态差异大,我们无法套用国外的模式与模型。另一方面,中国不断鼓励科研成果的产业转化,产业与学术、农业与数据科学的跨界合作正在逐步深入,因此实现产业核心数据模型的自主研发是大势所趋。

农业机械智能化机械化与智能化之间只隔着一个“数据驱动”的距离。

中国制造战略明确把“智能制造”作为主攻方向,顺应市场潮流,海尔、金风等老牌制造厂商已经积极开展数字化转型,寻找新的增长点。农机厂商也必将不断利用数据为机械赋能,适应数字农场的场景需求,实现从制造商向服务商的转型升级。

产业链虚拟化随着农业产业各环节数字化程度的有效提升。

当数字化的机器智能与商业智能走进生产与经营,产业链将不断走进网络,在网络世界逐步完成现实的数字化映射。产业链虚拟化将进一步推动消除信息不对称,提高产业效率,发现新的增长。

供应链金融普惠化近年来供应链金融迅猛发展。

据测算,到年,中国供应链金融的市场规模可达14.98万亿元。供应链金融是产业优化的重要组成部分。它通过优化资金流来促进产业、特别是中小企业的健康发展。通过物联网、互联网和人工智能等新兴技术的应用,数字农业将有效推动中小企业有机的融入产业网络体系,为供应链金融普惠化提供坚实的产业基础;同时,农业产业虚拟化进程所带来的产业信息透明化和主体信用可追溯也将为金融风险的量化管理提供切实的保障。

数据安全增强化无论是农田数据还是企业的经营数据都是反映从业者生产经营状况的关键信息。

数据带给产业动能的同时,也存在被滥用的风险。因此,数据安全是产业数字化发展的基本保障。存储和应用数据的信息化系统安全性的诉求将不断增强,数据权属问题也将随着法律的完善而得到妥善解决,解除产业数字化的后顾之忧。

数字农业的发展领域

数字技术中物联网技术,能实时获取大量农业数据,是数字农业数据的主要来源,为农业数字化奠定了基础。农业物联网被列为欧洲物联网18个重要发展方向之一,也是中国物联网9个领域的重点示范项目之一。

物联网技术可以用来解决农业领域的独特问题,各种基于物联网的应用,如精准农业、智能灌溉和智能温室将推动农业过程的改进。未来基于农业物联网技术,数字农业技术和模式将有望在以下几个典型的农业细分领域优先突破、大有作为。

智能农机装备作为一种农业生产手段,智能农机装备利用物联网技术和信息通信技术实现最佳生产和精益化生产。从农业作业手段上,推动农产品增产,农民降本增效,从集约化运作角度,实现环境资源可持续发展,农业生态良性循环。

智能灌溉提高灌溉效率和减少水资源浪费的需求正在增长。这种通过部署可持续和有效的灌溉系统来保护水资源的方法正在受到越来越多的

1
查看完整版本: 年中国数字农业最新发展概况与趋势